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Consensus Problem Statement

• Consensus is the reaching of an 
agreement on some quantity of 
interest, by a group of entities.

• Agents try to reach agreement on a 
common value by exchanging tentative 
values and combining them. 

• Consensus is applied to different fields  
including cooperative control of 
unmanned air vehicles,  mobile robots, 
autonomous underwater vehicles, 
satellites, aircraft, spacecraft, and 
automated highway systems. 



Consensus Problem Statement

• Agents must reach a common speed.

• Agents must form a uniformly spaced

string

• Agents decide the value of the final common 

velocity through a consensus protocol, 

starting from an initial desired value for each

agent.



Consensus Problem Statement

• Both the leaderless consensus and the 

leader-following consensus problems have

been studied

• It depends on whether or not there is a virtual

leader specifying the global information 

• The presented consensus protocol is

lederless

• Leaderless consensus scales better and is

more fault-tolerant than leader-following

consensus. 

• Leader decreases the degree of autonomy

of the network, in many practical missions, the 

agents need to reach autonomous

agreement. 



Consensus Problem Statement

(i, j) ∈ E if agent i can receive

information from agent j

i is the child

j is the parent



Consensus Problem Statement

(i, j) ∈ E if agent i can receive

information from agent j

i is the child

j is the parent

directed path from j to i: a sequence of 

edges (i, i1 ), (i1 , i2 ), ..., (il , j )  with distinct

vertices ik, k = 1, 2, ..., l.

root r: a vertex r such that for each vertex i 

different from r, there is a directed path

from r to i. 

directed tree:  a digraph in which there is

exactly one root and each vertex except for 

the root has exactly one parent. 

directed spanning tree: a directed tree, 

which consists of all the vertices and some 

edges in G. root
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Consensus Problem Statement

Consider vehicles with double-integrator 

dynamics:

xi= position of agent i

vi= velocity of agent i

Multi-agent system control problem: 

i) each agent must reach and steadily keep a common reference velocity v 

ii) all the agents must be spaced with uniform interspace gap d.

The common velocity is unknown to the agents. Agent i starts from an initial

value yi(0) for i = 1, ..., n of the reference velocity and by the consensus

protocol the agents reach a common value of yi for i=1,...,n.
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Consensus Problem Statement

Consider vehicles with double-integrator 

dynamics:

xi= position of agent i

vi= velocity of agent i

The starting point: 

the consensus protocol proposed by Ren (Trans. on AC, 2008) 

successively other autors provide new contributions considering delays in the 

communication or actuator saturation in the control.

(ri is the position).



Consensus Protocol

The consensus algorithm:

• by the first terms each agent communicates the actual distance from its

neighbour and the objective inter-space to be imposed between two nearby

agents; 

• by the second terms the agents communicate the actual difference between the 

velocities of its neighbours and the reference velocity

Dynamics of the reference velocity



Consensus Protocol

The consensus algorithm:

Dynamics of the system:



Consensus Protocol

The consensus algorithm:

Defining the following new variables:

p=Hx-d q=v-y r=Hy with

The dynamics of the system is described by:



Consensus Protocol

To be proved: the conditions that g and k must satisfy in order to ensure

that the system described by F is asymptotically stable

the consensus protocol successfully solves the multi-agent system control 

problem.

The multi-agent system control problem is equivalent to making system the 
following system asymptotically stable. 



Theorem 1: Consider a set of agents that communicate in a network 

topology described by a digraph G that has a directed spanning tree. The 

dynamics of the multi-agent system is asymptotically stable if and only if it
holds: 

for i = 1,...,n−1, with αi = Re[μi] and βi = Im[μi] where μi are the eigenvalues

of the Laplacian matrix of digraph G. 

(Re[c] and Im[c]) denote the real and imaginary part of complex number c, 

respectively).

Consensus Protocol
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So, the eigenvalues of F2,2 are the roots of

n− 1Y

i = 1

(λ + ⌘µi ) = 0. (16)

Now, let us compute the determinant of λ I 2n− 1 − F1,1:

|λ I 2n− 1 − F1,1| =
λ I n− 1 − H

L H + (λ + ) I n + γL
=

= |λ I n− 1| (λ + )I n + γL + L H + λ− 1H =

= λ− 1 |λ (λ + ) I n + (1 + γλ) L | . (17)

Note that it holds

|λ I n + L | =

n− 1Y

i = 0

(λ + µi ) . (18)

Then, by comparing (17) with (18) we obtain:

|λ I 2n− 1 − F1,1| = λ− 1

n− 1Y

i = 0

(λ (λ + ) + (1 + γλ) µi ) .

(19)

Since L has at least one null eigenvalue, i.e., µ0 = 0, from

(16) and (19) equation (15) follows. ⇤
Remark 2: By Lemma 1, if digraph G has a directed

spanning tree then F1,1 has one eigenvalue λ0 = − and

the other 2n − 2 eigenvalues are given by (13).

Now, we prove the conditions that γ and must satisfy in

order to ensure that system (14) is asymptotically stable, so

that protocol (9) successfully solves the multi-agent system

control problem.

Theorem 1: Consider a set of agents that communicate in a

network topology described by a digraph G that has a directed

spanning tree. The dynamics of the multi-agent system (14) is

asymptotically stable if and only if it holds:

↵ i ↵2
i + β2

i γ2 + 2↵2
i + β2

i γ + ↵ i
2 − β2

i > 0, (20)

for i = 1, ..., n− 1, with ↵ i = R[µi ] and βi = I [µi ] (R[c] and

I [c]) denote the real and imaginary part of complex number

c, respectively).

Proof: (Only if) Let us consider the factors of (15). If G has

a directed spanning tree, then according to Remark 2 it holds

R[λ ] = − R[⌘µi ] < 0 8i = 1, ..., n − 1. Moreover, let us

consider the remaining factors of (15):

λ2
i + ( + γµi ) λ i + µi = 0 with i = 1, ..., n − 1. (21)

Using Routh-Hurwitz criterion for second-order polynomial

with complex coefficients, we have that matrix F is Hurwitz-

stable if and only if:

R [ + γµi ] > 0 for i = 1, ..., n − 1 (22)

and

R [ + γµi ] R [( + γµi )µi ]− I [µi ]
2

> 0 for i = 1, ..., n− 1.

(23)

Condition (22) is always verified, since γ, 2 R+ and

R[µi ] > 0.

Let us write condition (23) with µi = ↵ i + j βi , we obtain:

( + γ↵ i ) ( + γ↵ i )↵ i + γβ2
i − β2

i > 0. (24)

After some calculations, result (20) follows from (24).

(If) Let us assume that (20) is verified, then (24), (23), (22)

follow. Hence, by the Routh-Hurwitz criterion equation (21)

is Hurwitz-stable and system (14) is asymptotically stable. ⇤
Let us consider the (γ, ) plane: each inequality of (20)

defines a region of stability in the plane, limited by a hy-

perbola. More precisely, in order to obtain stability, the point

(γ, ) must lie beyond a set of ”critical hyperbolae” , where

the i -th hyperbola depends only on µi . Fig. 1 shows the stable

and unstable regions of the (γ, ) plane that such inequality

produces.

Fig. 1. A critical hyperbola in the (γ , ) plane.

Theorem 1 generalizes the stability conditions presented in

the related literature [27] and [44] that consider the cases

γ = 0 and = 0, respectively. Indeed, if γ = 0 (no relative

feedback on velocity control), (20) becomes >
|β i |
p
↵ i

[27].

Moreover, if = 0 (no absolute feedback on velocity control),

we get γ >
q

1
↵ i

β 2
i

↵ 2
i + β 2

i

[44].

Now the following Corollary characterizes the digraphs

having the Laplacian matrix exhibiting real eigenvalues:

Corollary 1: If all the strongly connected components of

digraph G are symmetric and G has a directed spanning tree,

then L of G has a simple eigenvalue µ0 = 0 and the other

ones are real: in such a case (20) is verified 8γ , 2 R+ .

Proof: According to Remark 1, the Laplacian matrix of G

can be put into canonical form (1) and the eigenvalues of L

are the eigenvalues of the diagonal blocks of L associated

to each strongly connected components of G. Now if such

Laplacian diagonal blocks are symmetric, then the eigenvalues

of each block are real. Hence, we can conclude that if all the

strongly connected components of digraph G are symmetric

and G has a directed spanning tree, then L of G has a simple

eigenvalue µ0 = 0, the other ones are real and (20) is verified

8γ, 2 R+ . ⇤
Finally, we enlighten that no constraint on the parameter ⌘

is necessary for stability. However, a possible choice could be

selecting ⌘such that −R[⌘µi ] < R[λ i ] 8i = 1, ..., n − 1.

IV. EIGENVALUE ALLOCATION FOR THE CONTROLLED

MULTI-AGENT SYSTEM

In this section we propose a criterion for optimizing the

eigenvalues of matrix F by choosing parameters γ and

in order to maximize the convergence speed and avoid large

oscillations.

inserire questo nell’introduzione

The points ( k, g) to obtain stabilty must 

lie beyond the ”critical hyperbolae”.
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Maximizing Convergence Speed
The control problem objective
maximizing the consensus protocol convergence speed and 

avoiding large oscillations

a) selecting a real dominant eigenvalue of matrix F and maximizing the 

its absolute value

b) allocating the not dominant eigenvalues as far away as possible from 

the imaginary axis

choosing suitable values of parameters g and k



Proposition: Consider a set of agents that communicate in a 

network topology described by a digraph G that has all the strongly

connected components symmetric and a directed spanning tree.

Let μ0 = 0 and μi ∈ R+ for i = 1,...,n be the eigenvalues of the 

Laplacian matrix of G arranged in increasing order with i. 

The eigenvalues that solve the control problem are obtained by the 

following values of the parameters: 

Maximizing Convergence Speed
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Numerical Results and Comparison

n=8 agents



Numerical Results and Comparison
n=8 agents

GP∗ has a directed spanning tree and its strongly

connected components are symmetric. 

By Corollary 1 and  Proposition 3 the 

eigenvalues of L are real.

GP∗

The new parameters



Numerical Results and Comparison

Comparison with a similar method presented in literature:

the two protocols are applied to the graph topology characterized by 

Laplacian matrices with real non negative eigenvalues μi for i = 0, ..., (n-1): 

By introducing the second parameter , the proposed protocol can reach a 

greater convergence speed than the protocol using only parameter g. 



Numerical Results and Comparison
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and by applying (27) the performance index is

t0.5% = 29.82 s.

The benefits of the proposed protocol with respect to the

similar protocol (27) are apparent: i) improved convergence

speed; ii) possibility of reaching a common reference velocity

and a consensus of the value of the common velocity; iii)

possibility of reaching the uniform inter-space gap.

VI. CONCLUSIONS

This paper proposes a new consensus protocol that a multi-

agent system can apply in order to reach a common velocity

with desired spacing. The leaderless agents are able also to

reach a consensus about the reference velocity by starting

from an initial desired value for each agent. We prove the

conditions that guarantee the consensus control rules allow the

agents stably to achieve the decided inter-vehicular distance

and the common velocity. Moreover, the optimal eigenvalues

allocation isobtained in aclosed form of thecontrol parameter

values for a class of digraphs having a directed spanning tree

and modelling the communication network topology.

The advantage of the method is that a leader is not required

and by the optimized protocol parameters the fastest conver-

gence speed avoiding oscillations is guaranteed.

Future research directions will focusabout theassessment of

the protocol in presence of constraints on agent velocities and

accelerations. Moreover, investigations about the impact on the

stability and convergence of the delays of communication will

be analyzed. To this aim suitable conditions will be sought

to guarantee correct behaviour and good performance of the

protocol.

APPENDIX

Proof of Proposition 3

Proof: Let us consider the eigenvalues of the submatrix

F1,1. Taking into account (13), note that

max
γ ,

{−R[λ i + ],−R[λ i − ]} =
p
µi , (29)

i.e., condition (29) holds when the dominant eigenvalues of

A1,1 are real and coincident ( + γµi − 2
p
µi = 0). By

Corollary 1, the eigenvaluesµi are real and in increasing order

with i , then we choose as dominant eigenvalues λ1+ = λ1− =

−
p
µ1.

In order to solve P1, the (γ, )-plane for γ, 2 R+ is

divided into 4 regions (A,B,C and D) by the following straight

line as shown in Fig. 8

+ γµ1 = 2
p
µ1. (30)

Then, we determine or bound the value of the objective

function f 1 in each region.

Region A is the segment defined by (30) and:

0 < γ 1/
p
µ1 ,

p
µ1 < 2

p
µ1. (31)

Fig. 8. The (γ , )-plane divided into 4 regions.

In this region, λ1,+ = λ1,− = −
p
µ1, while, by substituting

(30) into (13) for i = 2, ..., n − 1, we get:

λ i ,± = −
p
µ1 −

γ (µ1 − µi )

2

±

q

γ2 (µi − µ1)
2

+ 4(µi − µ1) γ
p
µ1 − 1

2
.

Imposing (31), it holds −R[λ i ,± ] ≥
p
µ1, −R[λ0] = ≥

p
µ1. Therefore, we conclude that in region A we have

f 1(γ, ) =
p
µ1.

Region B is the segment defined by (30) and

1/
p
µ1 < γ < 2/

p
µ1 , 0 < <

p
µ1.

It is immediate that −R[λ0] = <
p
µ1, therefore in this

region f 1(γ, ) <
p
µ1.

Region C is defined by + γµ1 < 2
p
µ1. In this case, λ1,±

are complex conjugates and it holds:

−R[λ1,± ] =
+ γµ1

2
<

p
µ1.

As a consequence, we obtain f 1(γ, ) <
p
µ1.

Region D is defined by + γµ1 > 2
p
µ1. In this case λ1,+

is a real number and it holds:

−R[λ1,+ ] =
+ γµ1 −

q

( + γµ1)
2
− 4µ1

2
<

p
µ1.

We conclude that P1 is solved when (γ, ) is in region

A defined by (30) and (31) and max f 1(γ, ) =
p
µ1. Note

that the dominant eigenvalues are real and coincident to avoid

strong oscillations. Moreover, if different dominant eigenval-

ues are selected, i.e., µi 6= µ1, then a different straight line is

considered in the plane (γ, ). However, region A provides in

any case the optimal solution of P1.

To solve P2, let us assume that the solution is obtained

imposing:

R

2

4
− ( + γµ2) ±

q

( + γµ2)
2
− 4µ2

2

3

5 = − , (32)

which is satisfied when

= γµ2. (33)

Combining (30) and (33) we obtain (26).

Now, we show that the pair (γ̄, ¯) of (26) solves P2. Note

that three cases are possible for : = ¯ (case 1), < ¯

(case 2) and > ¯ (case 3).

ricordare che esiste un solo autovalore uguale a zero 

The proposed protocol



Conclusions and future research

• The consensus protocol can be applied by a multi- agent system in 

order to reach a common velocity with desired spacing. 

• The leaderless agents are able to reach a consensus about the 

reference velocity by starting from an initial desired value for each

agent. 

• We prove the conditions that guarantee the consensus control rules

allow the agents stably to achieve the decided inter-agent distance

and the common velocity. 

• The optimal eigenvalues allocation is obtained in a closed form of 

the control parameter values for a class of digraphs having a directed

spanning tree and modelling the communication network topology. 

• Advantage of the method: 1) a leader is not required; 2) by the 

optimized protocol parameters the fastest convergence speed

avoiding oscillations is guaranteed. 



Conclusions and future research

• Assessment of the protocol in presence of constraints on agent 

velocities and accelerations

• Investigation about the impact on the stability and convergence of the 

delays of communication

• Determine the suitable conditions to guarantee correct behaviour and 

good performance of the protocol. 
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