DEI Doctoral Research Seminars POLITECNICO DI BARI

The Ancillary Service Markets (ASM): The Italian case

Ph.D. Student

Gioacchino Tricarico *Cycle XXXV*

Tutors

Prof. Maria Dicorato Eng. Michele Principato

Politecnico

Seminar topics

- Introduction to Electrical Markets
- Evolution and challenges of Electrical Network and Markets
- Italian ASM Ex-Ante
- Proposed ASM model

Introduction to Electrical Markets

Energy Markets

- Minimization of generation costs
- Zonal market
- Constraints
 - Power balance
 - Unit Commitment (UC)
 - Net Transfer Capacity (NTC)
- Day Ahead Market (DAM)
 - Treading of the most daily energy
- Intraday Market (IM)
 - Adjustment of generators DAM program

Zonal market representation

ASM Ex-Ante—Structure

- Intrazonal branch overflow
- Cost minimization to provide hourly energy reserves
 - Generators technical limits
 - Production
 - Ramps
 - Minimum up/down time
 - Transmission network
 - Lines power flow
 - Buses voltage
 - Power balance
 - Reserves requirements
 - Active power
 - Reactive power

ASM Ex-Ante— Active power reserves

- Primary reserve
 - Generators response to perturbation
- Secondary reserve
 - Automatic control to restore
 - Primary reserve
 - Power balance (frequency)
 - Reserve requirement depends on demand estimation
- Tertiary reserve
 - Spinning reserve
 - · Restore the secondary reserve
 - Replacement reserve
 - Overcome load and renewable forecast variation and unexpected generator/load outage

ASM Ex-Post—Balancing market

- Real time market
- Exploitation of hourly Ex-Ante accepted offers
 - Primary reserve response
 - Secondary reserve employed constantly
 - Spinning reserve deployed quarter hour
 - Replacement reserve delivered within 2 hours
- Only power plants with specific features are enabled to participate to the ASM

Evolution and challenges of Electrical Network and Markets

Forecast of European Energy Demand and Supply

- In 2050 power demand grows by 40%
 - Yearly growth of 1.3%
 - From 3,500 TWh in 2020 to 4,900 TWh in 2050
 - Reduction of CO₂ emissions
 - Shifting from Carbon-fuels to electrical power
 - Transport
 - Facility heating/cooling
- Generation decarbonization
 - Replacement of coal- and gas-fired power generation
 - Offshore renewables resources
 - Nuclear power plant
 - Spreading of Pumped Storage Hydro Generation (PSHG)
 - Power and voltage control

Electrical vehicle

PSHG

Offshore wind turbine

Transmission System Challenges

- Dispatching of high penetration of intermittent generation
 - Not proportionally distributed (overflow)
 - Forecast according to expected weather
 - Curtailment
 - Distributed generation
 - · Reduction of system inertia
- Voltage control
 - Reduction of dispatchable generators
 - Higher voltage
- Enhance interconnections (HVAC/DC)
 - Increase resources exchange
 - Improve system stability

Development of European Markets— Energy Market

- Benefits
 - Improve resource sharing
 - Reduce price volatility
- Day Ahead Market Coupling (2012)
 - Spot market
- Intraday Market Coupling (2021)
 - Continuous treading market
- Nowadays the efforts are focused on Pan-European ASM development.

CROP ⇒X	>epexspot	EXAA	GME	
HEnEx		BEX NUMBER OF STREET	Nasdaq	
NORD POOL	OKIE	omie	opcom	
OTE-W-	Semo	SOUTH	TGE	
Nominated Electricity Market Operators				
				Coupling Markets

Italian ASM Ex-Ante

Energy markets characteristics

- DAM and IM goal is the cost minimization
- Interzonal flow bounds
- Generation constraints:
 - Stepwise selling/buying offers
 - Steps maximum power
 - Generator rated power
- DAM+IM infeasible global optimum solution

Examples of infeasible generators supply conditions

ASM Ex-Ante model

- Zonal market representation
- OF: Secondary reserve costs and

Redispatching costs minimization

- Start-up costs
- Shut-down costs
- Upward/Downward steps costs
- Constraints
 - NTC bounds
 - Power balance
 - UC and Economic Dispatch (UCED)
 - Secondary and tertiaries reserves requirements provision
 - Minimum number of active generators per market zone

Italian TSO

Example of generator ASM offers

Reserve requirements typologies

- Active power market (reserves)
- Secondary and tertiaries reserves requirements
 - Continent and Islands
 - Islands self-sufficient reserves in the event of interconnection outage
- Market zone tertiary reserves requirements
 - External zones provision depends on NTS bounds
- Manual operation according to contingency occurred

Proposed ASM Model

Multi-Stage Model—Reserves provision (1/3)

- MILP Problem developed on Pyomo (Python Optimization Modelling)
- Zonal market representation

Multi-Stage Model—Reserves provision (2/3)

- Constraints
 - Zonal and total power balance
 - UCED
 - Power limits
 - Start-up or shut-down
 - Start-up before upward movement
 - NTC bounds
 - Secondary reserve provision
- Model tests on 3 bus system
- Next steps:
 - Tertiaries reserves provision
 - Suitable voltage control
 - Test the model on IEEE 118-bus system

$$\Delta P_g^{ASM} = \sum_{s=1}^{N_S} \left(\Delta P_{g,s}^{\uparrow} - \Delta P_{g,s}^{\downarrow} \right) + \Delta P_{MIN_g} \alpha_g^{SU} - \min \left(P_{MIN_g}, P_{MI_g} \right)^+ \alpha_g^{SD}$$

$$\left\{ \begin{array}{l} P_{IM_g} + \Delta P_g^{ASM} - P_g^{SR} \ge P_{MIN_g} \alpha_g \quad \forall \ g \in N_G \\ P_{IM_g} + \Delta P_g^{ASM} + P_g^{SR} \le P_{MAX_g} \alpha_g \quad \forall \ g \in N_G \end{array} \right.$$

$$\left. \Rightarrow \alpha_g^{SU} + \alpha_g^{SD} = 1 \quad \forall \quad 0 < P_{MI_g} < P_{MIN_g} \ (g \in N_G) \right\}$$

$$\left. \Rightarrow \alpha_g^{SU} - \alpha_q^{\uparrow} \ge 0 \quad \forall \quad P_{IM_g} < P_{MIN_g} \ (g \in N_G) \right\}$$

19 constraints for each generator

Multi-Stage Model—Reserves provision (3/3)

- Input data
 - DAM+IM results
 - Zonal demand load and renewable generation
 - Dispatchable power plants
 - Generator datasheets
 - Minimum and maximum power
 - MUT and MDT
 - · Secondary reserve half-bandwidth
 - ...
 - ASM inputs
 - Reserve requirements
 - NTC bounds
 - Redispatching offers
 - Secondary reserve offers

- Output data
 - Total cost
 - Interzonal flows
 - Redispatching and reserve provided by generators

```
Objectives:
 cost min : Size=1, Index=None, Active=True
     Kev : Active : Value
            True : 52657.56
     None :
Variables:
 F i : Size=3, Index=F i index
      Key : Lower : Value
                                      : Upper : Fixed : Stale : Domain
     Z1-Z2 : None : 183.333333333333 : None : False : False
      Z2-Z3 : None : 253.333333333333 : None : False : False :
                                                                 Reals
      Z3-Z1 : None : -436.6666666666667 : None : False : False :
DP asm g : Size=6, Index=DP asm g index
     Key : Lower : Value : Upper : Fixed : Stale : Domain
           None : 150.0 : None : False : False : Reals
                   0.0 : None : False : False :
                   0.0 : None : False : False :
                    0.0 : None : False : False :
                                                   Reals
            None :
           None : 20.0 : None : False : False : Reals
                    0.0 : None : False : False : Reals
           None :
Prs g : Size=6, Index=Prs g index
     Key : Lower : Value : Upper : Fixed : Stale : Domain
              0 : 30.0 : None : False : False : NonNegativeReals
     G1 :
     G2 :
              0 : 21.2 : None : False : False : NonNegativeReals
     G3 :
                    0.0 : None : False : False : NonNegativeReals
              0 :
     G4 :
              0 : 0.0 : None : False : False : NonNegativeReals
     G5 :
              0 : 28.8 : None : False : False : NonNegativeReals
      G6 :
              0: 0.0: None : False : False : NonNegativeReals
```

Multi-Stage Model—Network requirements

- Solution fulfills network requirements
 - Intrazonal branch flows
 - Nodal voltages
- Test case IEEE 118-bus system
- AC load flow with sensitivity analysis
 - DIgSILENT PowerFactory
 - Nodal distribution of optimization results
 - Power transfer distribution factors (PTDFs)
 - Minimization of decongestion costs
- Apply proposed method to South Italy TS

400 kV and 230 kV South Italy TS